การออกแบบระบบกวนเร็ว –กวนช้ำแบบ Impellers Mixer สำหรับน้ำประปาขนาด 5,000 ลูกบาศก์เมตรต่อวัน

โดย นายพรศักดิ์ สมรไกรสรกิจ

เกณฑ์การออกแบบ

1. เกณฑ์ในการออกแบบถังกวนเร็ว (Mechanical Mixing)

ข้อพิจารณา	เกณฑ์หรือค่าที่ใช้ออกแบบ	หน่วย	หมายเหตุ
1 เวลาที่น้ำอยู่ในถัง	10 - 40	วินาที	
2 ความเร็วรอบของใบพัด	100 - 120	รอบ/นาที	
3 ค่า G	500 - 1000	1/วินาที	

2. The Values of diesign parameters generally adopted in design of mechcanical mixers are

as given below (Rapid Mixing)

Water Treatment Process (Simple Option)

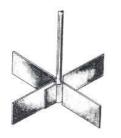
Item	Design Criteria	unit
1 Mixing Time	20 - 60	sec
2 Diameter of Mixing Tank (D)	1 - 3	m.
3 Diameter of impeller (D _a)	0.2D - 0.4D	m.
4 Speed of flat Blade turbine	10 - 150	rpm.
5 Speed of Propeller	150 - 1500	rpm.

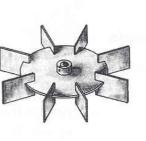
3. Contact time and Velocity Gradient for Rapid Mixing

1. Rapid mixing time,s

20	30	40	>40
1000	900	790	700

2. Velocity gradient(G), s⁻¹


4. เกณฑ์ในการออกแบบถังรวมตะกอน (Mechnical Mixing)


ข้อพิจารณา	เกณฑ์หรือค่า	าที่ใ	ช้ออกแบบ	หน่วย	หมายเหตุ
1. เวลาเก็บกักน้ำ	20	-	60	นาที	
2. ความเร็วรอบของใบพัด	1	-	15	รอบ/นาที	
3. ความเร็วตามแนวเส้นรอบวง	0.1	-	1	เมตร/วินาที	
4. ค่า G	10	-	75	วินาที ⁻¹	
	5	-	100		
5. ค่ำ Gt	20,000	-	200,000		
6. ระยะห่างระหว่างก้นถังกับปลายใบพัดหรือระย	เะห่าง				
ระหว่างผนังด้านใน	0.15	-	0.3	เมตร	
7. ความลึกของถัง	1.5	-	2	เท่าของเส้นผ่าศูนย์	โกลางวงล้อ
8. ความเร็วในแนวราบของน้ำ	0.15	-	0.25	เมตร/วินาที	
9. พื้นที่ของใบพัด, % ของพื้นที่ภาคตัดขวางของถ	10	-	25		

5. Kawamura

		Mechanical Flocculators			
	Baffled Channel	Horizontal Shaft with Paddles	Vertical Shaft with Blades		
G (s ⁻¹) T (min) Flocculation stages (number of channels or	50-10 tapered 30-45 6-10	50-10 tapered 30-40 3-6	70-10 inpered 20-40 2-4		
number of horizontal shafts) Mix energy control Maximum flow velocity	Flow passage variation	Variable mixing speed 3	Variable mixing speed 6-9		
or mixer tip speed (fps) = Blade area/tank area (%) Blade: <i>D/T</i> Shaft rpm Major application	Conventional complete treatment	5-20 0.5-0.75 1-5 Conventional complete treatment	0.1-0.2 0.2-0.4 8-25 Direct filtration and conventional complete treatmen		

Page 1 of 1



(c)

(a)

(d)

(e)

Page 1 of 3

1. Rapid Mixing by Radial and Axial Impellers

Theory
$$G = \sqrt{\frac{P}{\mu V}}$$

Where :

- $G = \text{Velocity gradient, sec}^{-1}(\text{G} = 700 \text{ to } 1000 \text{ sec}^{-1})$
- P = Power Imparted to the water, N-m/s or Watt or kg.m²/s³
- $V = Volume of the basin, m^3$
- μ = absolute viscosity of the fluid, N-s/m²

The motor power of the mixer is the power to drive the speed reduction gears. The powe imparted to the water by a mixer is calculated from

Theory $P = 2\pi nT$

Where :

n = Impeller speed, revolutions per second (rps)

T = Impeller shaft torque, N-m.

Other expression for the power imparted to the water are given by :

Theory $P = N_p \mu n^2 d^3$ is used for the Laminar-flow range (Reynolds number N_R < 10) $P = N_p \rho n^3 d^5$ is used for the Turbulent-flow range (Reynolds number NR > 10,000)

Where :

- N_P = Power number of the impeller (power numbers for different types of impellers are give in table 8 5
 - d = impeller diameter, m
 - ρ = mass density of fluid, kg/m³

 μ = absolute viscosity of water, N-s/m²

The Reynolds number for Rapid mixers is given by :

Theory $N_R = \frac{d^2 n \rho}{\mu}$

The velocity gradient for a mixing basin utilizing flow - induced turbulence can be calculated from

$$G = \frac{g\rho\sqrt{h_L}}{t\mu}$$

Where :

 h_L = total head loss through the mixer,m t = detention time, s

Detention time in Rapid-Mix Basin

Theory $t = \frac{V}{Q}$

Where :

t = average detention time, min Q = flow rate, m³/min V = volume of the tank, m³

Check Mixer Tip Speed

Theory

Tip Speed = πDn m/s

Where :

D = Diameter of Impeller (m.)

n = Impeller speed, revolutions per second (rps)

Rapid Mix

Tip Speed > 1 m/s

Slow Mix

1.Baffle Channel < 0.9 m/s

2.Mechanical Flocculators

- Horozontal Shaft with Paddle < 0.9 m/s

- Vertical Shaft with Blade < 1.8 m/s to 2.7 m/s

1. Power Number for Impeller

	Power Number, N _p
Radial flow	
Straight blade turbine	
4 blade $(w/d = 0.15)^{a}$	2.6
4 blade ($w/d = 0.2$)	3.3
Disc turbine	
4 blade ($w/d = 0.25$)	5.1
6 blade ($w/d = 0.25$)	6.2
Axial flow	
Propeller 1:1 pitch	0.3
Propeller 1.5:1 pitch	0.7
45° Pitched blade	
4 blade ($w/d = 0.15$)	1.36
4 blade ($w/d = 0.2$)	1.94

Table 8-5 Power Numbers of Various Rapid-Mix Impellers

a w/d = blade width-to-diameter ratio.

Source: Adapted in part from References 2, 5, 27, and 28.

2. Coefficient of Drag for Paddle

Table 8-6Coefficient of Drag (C_D) for Paddle-Wheel Flocculator, Based on Length-
to-Width Ratio of the Paddle

Length-to-Width Ratio (L/W)	CD
5	1.20
20	1.50
00	1.90

RAPID MIXING TANK

Give

1 Flow rates

Q _{aveage flow rate-day}	=	5000	m ³ /d
$Q_{maximum flow rate} (1.5 Q_{average flow rate-day})$	=	7500	m ³ /d
	=	313	m ³ /hr
Velocity in Raw water pipe	=	2	m/s
Theory Q	= Av		
Pipe Diameter (D)	$=\sqrt{\frac{4Q}{\pi v}}$		
Diameter of Raw water pipe	=	0.24	m.
Use Mixing Tank	=	2	Tank
Flow rate per tank	=	156	cu.m/hr
Give Detention Time	=	40	sec

Theory

...

 $Q = \frac{V}{t}$

2 Volume of the Tank required = 1.736

Geometry of Rapid-Mix Basin utilizing mechanical mixers are usually **square** and have a depth to width ratio of approximately 1.5 yields excellent performance with turbine mixers

 m^3

:. Volume of the Tank = $W \times L \times Depth$ = $W \times W \times 1.5W$ = $1.5W^{-3}$

Solve for W $W = \left(\frac{Volume \ of \ the \ Tank}{1.5}\right)^{\frac{1}{3}}$ 1.050 W = m. Width of Rapid Mixing Tank 1.050 ... =m. Length of Rapid Mixing Tank = 1.050 m. Depth of Rapid Mixing Tank 2.100 = m.

Page 2 of 4

The sustained temperature of raw water is excepted to be in the range from 5° to 28° .

The lowest temperature will present the critical condition in the mixer design

$$\mu$$
 = 0.000895 Kg/m.s at 25°C
 ρ = 997.1 Kg/m³ at 25°C

Theory
$$G = \sqrt{\frac{P}{\mu V}}$$

Where :

G	= Velocity gradient, sec ⁻¹	$(G = 700 \text{ to } 1000 \text{ sec}^{-1})$
Р	= Power Imparted to the water,	N-m/s or Watt or kg.m 2 /s 3
V	= Volume of the basin, m^3	
μ	= absolute viscosity of the fluid,	N-s/m ²

Give Velocity Gradient	(G)	=	950	-1 S
One velocity orderent	(\mathbf{O})		550	0

3 Power Imparted to the water,	P =	1402.3	N-m/s or Watt or kg.m ² /s ³
	=	1.4023	kWatt

P is the power imparted to the water. The power of the driver(P') is calculated by diving P by the efficiency of the gearbox, which is typically around 90 percent

Power Imparted to the water, P' 1.5581 kWatt =1 HP = 0.7457 kWatt Power Imparted to the water, P = 2.0895 ΗP ••• Use Standard motor of P' = HP, rpm = and efficiency = 90 percent

4 Impeller Design

Calculate impeller size and rotational speed. The rapid-mix basin will be an "up flow" type.Experience shown that radial-flow mixers perform batter than axial-flow mixers in a vertical-flow basir

	Use axial flow 45oPitched blade 4 blade mixer						
	Blade width-to-Diameter r	atio	=	0.2			
		N_P	=	1.94			
	Theory			$N_P \rho n^3 d^5$			
		n	=	$\left(\frac{P}{\rho N_P d^5}\right)^{\frac{1}{3}}$			
	Diameter of mixing tank (D)		=	1.050	m	= Width of Rapid Mixing Tank	
	Diameter of impeller (d)		=	0.2 to 0.4D	use 0.3D		
	Diameter of impeller (d)		=	0.315	m		
÷		п	=	6.380911208 382.8546725	rps rpm		
	use gear box to convert rp	om(st	and	ard motor) to	382.8547	rpm	
5	Given Check Reynolds number for turbut			$\frac{d^2n\rho}{\mu}$			
	1	V_R	=	705285.6756	> 10,000	OK	
						Therefore this equation is Valid	
6	Dimentions of impeller are as follo	ow					
	- Diameter of impeller (d)		=	31.5	cm.		
	- Width of impeller (W)		=	6.3	cm.		

7 (Check	Impeller	shaft	torque

Theory	Р	=	$2\pi nT$	
·.	Т	=	34.99495323	N-m

choose motor gear = 382.8546725 rpm.

...

Page 4 of 4

Shaft torque	=	34.99495323	N-m
Use Standard motor of P'	=	2.0895	HP

8 Head loss through the mixer

Theory

$$G = \frac{g\rho\sqrt{h_L}}{t\mu}$$

 $h_L = 1.208921E-05$ m.

Flocculator Compartment 1

Give

•

1 Flow rates

	Q _{aveage flow rate-day}	=	5000	m ³ /d
	$Q_{maximum \ flow \ rate} \ (1.5 Q_{average \ flow \ rate-day})$	=	7500	m ³ /d
		=	313	m ³ /hr
	Use Mixing Tank	=	2	Tank
•••	Flow rate per tank	=	156	cu.m/hr
	Give Detention Time in Compartment	=	10	min
		=	600	sec

Theory $Q = \frac{V}{t}$

2 Volume of the Tank required	=	26.042	m^3
Give the average water depth	=	4.25	m.
: Tank Area	=	6.127	m^2
length (L)	=	Width (W)	
: Tank Area	=	W^2	
Solve for W	=	2.475	m.
. Width of Rapid Mixing Tank	=	2.475	m.
Length of Rapid Mixing Tank	=	2.475	m.
Depth of Rapid Mixing Tank	=	4.250	m.

The sustained temperature of raw water is excepted to be in the range from 5° to 28° .

The lowest temperature will present the critical condition in the mixer design

μ	=	=	0.000895	Kg/m.s	at 25°C
ρ	=	=	997.1	Kg/m ³	at 25°C

Theory

$$G = \sqrt{\frac{P}{\mu V}}$$

γ μν

Where :

	G	=	Velo	city gradient	t, sec ⁻¹	(G = 700	to 1000 sec ⁻¹)	
	Р	=	Pow	er Imparted	to the wate	r, N-m/s or	Watt or kg.m ² /	s ³
	V	=	Volu	me of the ba	asin, m ³			
	μ	=	abso	olute viscosit	ty of the flui	d, N-s/m ²		
Give Velocity Gradient (G)			=	70	-1 S			
Power Imparted to the water,		Р	=	114.2	N-m/s or	Watt or kg.	m^2/s^3	
			=	0.1142	kWatt			
P is the power imparted to the	wat	er. T	he p	ower of the	driver(P') is	calculated	l by diving P b	y the
efficiency of the gearbox, which	ch is	typi	ically	around	90	percent		
Power Imparted to the water,		Ρ'	=	0.1269	kWatt			
	1	ΗP	=	0.7457	kWatt			
Power Imparted to the water,		Ρ	=	0.1702	HP			
Use Standard motor of P'			=		HP,	rpm =		
			8	and efficienc	ey =	90	percent	

4 Impeller Design

Calculate impeller size and rotational speed. The rapid-mix basin will be an "up flow" type.Experience shown that radial-flow mixers perform batter than axial-flow mixers in a vertical-flow basir

Use axial flow 45oPitched blade 4 blade mixer

Blade width-to-Diameter ratio = 0.2

Theory

$$N_{\rm P} = 1.94$$

$$P = N_{\rm P} \rho n^3 d^5$$

$$n = \left(\frac{P}{\rho N_{\rm P} d^5}\right)^{1/3}$$

Diameter of mixing tank (D) = 2.475 m = Width of Rapid Mixing Tank
Diameter of impeller (d) = 0.2 to 0.4D use 0.3D

$$\therefore$$
 Diameter of impeller (d) = 0.743 m
 \therefore $n = 0.662266849$ rps
= 39.73601092 rpm
 \therefore use gear box to convert rpm(standard motor) to 39.73601 rpm
5 Check Reynolds number for turbulent flow
Theory $N_R = \frac{d^2n\rho}{\mu}$
 \therefore $N_R = 406884.4118 > 10,000$ OK
Therefore this equation is Valid
6 Dimentions of impeller are as follow
 \cdot Diameter of impeller (d) = 74.3 cm.
 \cdot Width of impeller (W) = 14.9 cm.
7 Check Impeller shaft torque
Theory $P = 2mT$
 \therefore $T = 27.45966479$ N-m
 \therefore choose motor gear = 39.73601092 rpm.
Shaft torque = 27.45966479 N-m
Use Standard motor of P' = 0.1702 HP
8 Check Mixer Tip Speed

Page 3 of 4

Theory	Tip Speed =	= πDn	m/s		
· .	Tip Speed =	1.545	m/s	< 1.8 m/s to 2.7 m/s	OK.

9 Head loss through the mixer

Theory

...

$$G = \frac{g\rho\sqrt{h_L}}{t\mu}$$

$$h_L = 1.476826E-05$$
 m.

Flocculator Compartment 2

Give

•

1 Flow rates

	Qaveage flow rate-day	=	5000	m ³ /d
	$Q_{maximum flow rate} (1.5 Q_{average flow rate-day})$	=	7500	m ³ /d
		=	313	m ³ /hr
	Use Mixing Tank	=	2	Tank
•••	Flow rate per tank	=	156	cu.m/hr
	Give Detention Time in Compartment	=	10	min
		=	600	sec

Theory $Q = \frac{V}{t}$

2 Volume of the Tank required	=	26.042	m ³
Give the average water depth	=	4.25	m.
: Tank Area	=	6.127	m^2
length (L)) =	Width (W)	
: Tank Area	=	W^2	
Solve for W	=	2.475	m.
Width of Rapid Mixing Tank	=	2.475	m.
Length of Rapid Mixing Tank	=	2.475	m.
Depth of Rapid Mixing Tank	=	4.250	m.

The sustained temperature of raw water is excepted to be in the range from 5° to 28° .

The lowest temperature will present the critical condition in the mixer design

μ =	=	0.000895	Kg/m.s	at 25°C
ho =	=	997.1	Kg/m ³	at 25°C
Theory	G = 1	$\frac{P}{\mu V}$		

Where :

	<i>G</i> =	Velo	ocity gradient	, sec ⁻¹	(G = 700	to 1000 sec ⁻¹)
	<i>P</i> =	= Pow	ver Imparted	to the water	, N-m/s or	Watt or kg.m ² /s ³
	V =	· Volu	ume of the ba	sin, m ³		
	μ =	abs	olute viscosit	y of the fluic	l, N-s/m ²	
Give Velocity Gradient (G)		=	40	-1 S		
3 Power Imparted to the water,	Р	' =	37.3	N-m/s or \	Watt or kg.	m^2/s^3
		=	0.0373	kWatt		
P is the power imparted to the v	vater.	The	power of the	driver(P') is	calculated	l by diving P by the
efficiency of the gearbox, which	n is typ	bicall	y around	90	percent	
: Power Imparted to the water,	P'	=	0.0414	kWatt		
	1 HP) =	0.7457	kWatt		
. Power Imparted to the water,	F) =	0.0556	HP		
: Use Standard motor of P'		=		HP,	rpm =	
			and efficienc	y =	90	percent

4 Impeller Design

Calculate impeller size and rotational speed. The rapid-mix basin will be an "up flow" type.Experience shown that radial-flow mixers perform batter than axial-flow mixers in a vertical-flow basir

Use axial flow 45oPitched blade 4 blade mixer

Blade width-to-Diameter ratio = 0.2

Theory

$$N_{\rm P} = 1.94$$

$$P = N_{\rm P} \rho n^3 d^5$$

$$n = \left(\frac{P}{\rho N_{\rm P} d^5}\right)^{\frac{1}{3}}$$

Diameter of mixing tank (D)

= 2.475 m

= Width of Rapid Mixing Tank

Impellers Mixer

Diameter of impeller (d)	= 0.2 to 0.4D use 0.3D
: Diameter of impeller (d)	= 0.743 m
	n = 0.456044949 rps
	= 27.36269695 rpm
: use gear box to convert	rpm(standard motor) to 27.3627 rpm

5 Check Reynolds number for turbulent flow

Theory
$$N_R = \frac{d^2 n \rho}{\mu}$$

$$N_R$$
 = 280185.5193 > 10,000 OK

Therefore this equation is Valid

6 Dimentions of impeller are as follow

- Diameter of impeller (d)	=	74.3	cm.
- Width of impeller (W)	=	14.9	cm.

7 Check Impeller shaft torque

...

Theory	Р	=	$2\pi nT$	
·.	Т	=	13.02100482	N-m

•••	choose motor gear =	27.36269695	rpm.
	Shaft torque =	13.02100482	N-m
	Use Standard motor of P'	0.0556	HP

8 Check Mixer Tip Speed

Theory	Tip Speed =	= <i>πDr</i>	ı	m/s		
•	Tip Speed =	=	1.064	m/s	< 1.8 m/s to 2.7 m/s	OK.

9 Head loss through the mixer

Theory

...

$$G = \frac{g\rho\sqrt{h_L}}{t\mu}$$

 $h_L = 4.822288E-06$ m.

Flocculator Compartment 3

Give

•

1 Flow rates

	$Q_{aveage flow rate-day}$	=	5000	m ³ /d
	$Q_{maximum flow rate} (1.5 Q_{average flow rate-day})$	=	7500	m ³ /d
		=	313	m ³ /hr
	Use Mixing Tank	=	2	Tank
•••	Flow rate per tank	=	156	cu.m/hr
	Give Detention Time in Compartment	=	10	min
		=	600	sec

Theory $Q = \frac{V}{t}$

2 Volume of the Tank required	=	26.042	m ³
Give the average water depth	=	4.25	m.
: Tank Area	=	6.127	m^2
length (L)) =	Width (W)	
: Tank Area	=	W^2	
Solve for W	=	2.475	m.
Width of Rapid Mixing Tank	=	2.475	m.
Length of Rapid Mixing Tank	=	2.475	m.
Depth of Rapid Mixing Tank	=	4.250	m.

The sustained temperature of raw water is excepted to be in the range from 5° to 28° .

The lowest temperature will present the critical condition in the mixer design

μ =	=	0.000895	Kg/m.s	at 25°C
ho =	=	997.1	Kg/m ³	at 25°C
Theory	G = 1	$\frac{P}{\mu V}$		

Where :

	<i>G</i> =	= Ve	elocity grac	lient, sec ⁻¹	(G = 70	0 to 1000 sec ⁻¹)
	<i>P</i> =	= Pc	wer Impar	ted to the wa	iter, N-m/s o	r Watt or kg.m $^2/s^3$
	<i>V</i> =	= Vc	olume of the	e basin, m ³		
	μ :	= ab	osolute visc	osity of the f	luid, N-s/m ²	
Give Velocity Gradient (G)		=	20	-1 S		
3 Power Imparted to the water,	1	D =	= 9.3	N-m/s o	or Watt or kg	J.m ² /s ³
		=	0.009	3 kWa	tt	
P is the power imparted to the v	water.	. The	e power of	the driver(P')	is calculate	d by diving P by the
efficiency of the gearbox, which	n is ty	pica	ally around	90	percent	
: Power Imparted to the water,	P'	=	0.010	4 kWa	tt	
	1 HI	P =	0.745	7 kWa	tt	
: Power Imparted to the water,		P =	0.013	9 HP		
: Use Standard motor of P'		=		HP,	rpm =	
			and effici	ency =	90	percent

4 Impeller Design

Calculate impeller size and rotational speed. The rapid-mix basin will be an "up flow" type.Experience shown that radial-flow mixers perform batter than axial-flow mixers in a vertical-flow basir

Use axial flow 45oPitched blade 4 blade mixer

Blade width-to-Diameter ratio = 0.2

Theory

$$N_{\rm P} = 1.94$$

$$P = N_{\rm P} \rho n^3 d^5$$

$$n = \left(\frac{P}{\rho N_{\rm P} d^5}\right)^{\frac{1}{3}}$$

Diameter of mixing tank (D) = 2.475

m =

= Width of Rapid Mixing Tank

Impellers Mixer

Diameter of impeller (d)		=	0.2 to 0.4D	use 0.3D	
: Diameter of impeller (d)		=	0.743	m	
<i>.</i>	п	=	0.287290316	rps	
		=	17.23741893	rpm	

: use gear box to convert rpm(standard motor) to 17.23742 rpm

5 Check Reynolds number for turbulent flow

Theory
$$N_R = \frac{d^2 n \rho}{\mu}$$

$$N_R = 176505.8168 > 10,000$$
 OK

Therefore this equation is Valid

6 Dimentions of impeller are as follow

- Diameter of impeller (d)	=	74.3	cm.
- Width of impeller (W)	=	14.9	cm.

7 Check Impeller shaft torque

...

Theory	Р	=	$2\pi nT$	
•••	Т	=	5.167389188	N-m
· · ·	choose motor gear	=	17.23741893	rpm.

Shaft torque =	5.167389188	N-m
Use Standard motor of P' =	0.0139	HP

8 Check Mixer Tip Speed

Theory	Tip Speed	=	πDn	m/s		
•	Tip Speed	=	0.670	m/s	< 1.8 m/s to 2.7 m/s	OK.

9 Head loss through the mixer

Theory

...

$$G = \frac{g\rho\sqrt{h_L}}{t\mu}$$

 $h_L = 1.205572E-06$ m.