การออกแขขขั้มสุขน้ำ

โดย

นายมาตักดิ์ สมาไกาสากิจ

Figure 7-3 Definition sketches for determination of pump total static heads. (a) Lift suction head. (b) Flooded suction head.

Pumping Design

1.Flow rate =
$$\frac{15}{m}$$
 m/hr

$$Equation \quad Q \quad = \quad Av$$

$$A = \frac{\pi D^2}{4}$$

$$\therefore \qquad v = \frac{Qx4}{\pi D^2}$$

$$v = 7400.72 \text{ m/hr} = 2.055755 \text{ m/sec}$$

1. Calculate headloss in Suction Pipe

1.1 Minor losses due entrance

Equation	$h_{\scriptscriptstyle m}$	=	$K\frac{v^2}{2g}$
----------	----------------------------	---	-------------------

$$h_m$$
 = headloss inlet pipe (m)

$$v =$$
 water velocity in suction pipe (m/s)

Entrance		K
Pipe Project into tank		0.83
End of pipe flushed		0.5
with tank		
Slightly rounded		0.23
Bell mouthed		0.04
m/s ² Use		0.5

$$\therefore \qquad \qquad h_{\scriptscriptstyle m} \quad = \qquad \text{0.1077} \qquad \text{m}.$$

1.2 Minor Head losses in Pressure Conduits

$$h = k \frac{v^2}{2g} x number$$

Table 1 Minor Head losses in Pressure Conduits

Item	K factor	Number	Total Minor head loss
1. Gate Valve			
- Full open	0.19	1	0.040926
- One-fourth closed	1.15		0
- One - half closed	5.6		0
- Three - forths closed	24		0
- Typical value	1		0
2. Butterfly Valve			
- Full open	0.3		0
- 20°	1.4		0
- Angle closed 40°	10		0
- 60°	94		0
- Typical value	1.2		0
3. Check valve			
- K = 1.5 - 2.5	1.5		0
4. Plug Valve	1		0
5. Elbow (45 -61 cm diameter)			
- 22.5° (K = 0.1 - 0.2)	0.1		0
-45° (K = 0.2 - 0.3)	0.2		0
-90° (K = 0.25 - 0.6)	0.25		0
6. Tee			
- Run to run (K = 0.25 - 0.6)	0.25		0
- Branch to run(K= 0.6 - 1.8)	0.6		0
- Run to branch(K=0.6 - 1.8)	0.6		0

Table 1 Minor Head losses in Pressure Conduits (contrinues)

Item	K factor	Number	Total Minor head loss
7. Reduer			
(with angle of divergence			
10°- 20°)			
K = 0.15 - 0.2	0.15		0
8. Increaser			
(with angle of divergence			
10°- 20°)			
K = 0.05 - 0.3	0.05		0
		Total	0.040926

1.3 Friction losses in the pipe are typically calculated from Dracy-Weisbach

 $\boxed{ Equation \quad h_f = f \frac{L}{D} \frac{v^2}{2g} }$

where

 h_f = total friction head loss in suction or discharge pipes,(m)

L = length of pipe,(m) (suction or discharge pipes)

D = diameter of the pipe,(m)

v = velocity in the pipe,(m/s)

f = coefficient of friction (Dracy - Weisbach) page 636(integrated design of water

treatment facilities)

g = acceleration due to gravity, 9.81 m/s²

Table 2 Approximate Minor Head Losses in Fittings and Valves (page 98, water and wastewater technology)

Fitting and Valve	Equivalent Length	Loss Coefficient
	(Diameters of pipe)	k
1. Tee (run)	20	0.6
2. Tee (branch)	60	1.8
3.90° bend-		
Short radius	32	0.9
Medium radius	27	0.75
Long radius	20	0.6
4. 45° bend	15	0.42
5. Gate Valve (full open)	17	0.48
(open 1:4)	1000	
6. Swing check valve(open)	135	3.7
7. Butterfly valve (open)	40	1.2
8. Glove valve (open)	200	
9. Check valve(full open)	150	
10. Check valve with strainer	400	

Table 3 Approximate Minor Head Losses in Fittings and Valves in term Equavalent Pipe Length($L_{\rm e}$)

Fitting and Valve	Equivalent Length	Pieces	Diameter suction pipe	Equivalent Pipe(L _e)
	(Diameters of pipe)		(m.)	(m.)
1. Tee (run)	20		0.0508	0
2. Tee (branch)	60		0.0508	0
3.90° bend-				0
Short radius	32		0.0508	0
Medium radius	27		0.0508	0
Long radius	20		0.0508	0
4. 90° Standard	30	1	0.0508	1.524
4. 45° bend	15		0.0508	0
5. Gate Valve (full open)	17		0.0508	0
(open 1:4)	1000		0.0508	0
6. Swing check valve(open)	135		0.0508	0
7. Butterfly valve (open)	40	1	0.0508	2.032
8. Glove valve (open)	200		0.0508	0
9. Check valve(full open)	150		0.0508	0
10. Check valve with strainer	400		0.0508	0
			Total (L _e)	3.556

Table 4 Relation between surface conditions and friction coefficien

Condition	Friction Coefficient			
	n (Manning's)	C (Hazen's)	f (Darcy's)	Notes
Very smooth surface	0.01	140	0.0002	PVC Pipe clean cement
				lined pipe
Fair condition surface	0.013	120	0.0012	Unlined pipe
Rough surface	0.016	100	0.0025	Rusted pipe

Pipe Material: PVC \therefore f = 0.0002

 $h_f = 0.004712 \quad \text{m.}$

 $\begin{tabular}{ll} \textbf{Total Head Loss in Suction Pipe}: h_m + \textit{Mior head losses in Pressure Conduits} + h_f \\ \\ \textbf{Total Head Loss in Suction Pipe}: 0.153337 \\ \end{tabular}$

Pumping Design

1.Flow rate =
$$15 \text{ m}^3/\text{hr} = 0.004167 \text{ m}^3/\text{s}$$

$$=$$
 0.0508 m.

5. Discharge Pipe Diameter =
$$2$$
 in = 0.0508 m.

$$Equation \quad Q = Av$$

$$A = \frac{\pi D^2}{4}$$

$$\therefore \qquad v = \frac{Qx4}{\pi D^2}$$

$$v = 7400.72 \text{ m/hr} = 2.055755 \text{ m/sec}$$

2. Calculate headloss in Discharge Pipe

2.1 Minor losses due exit

Equation	$h_{\scriptscriptstyle m}$	=	$K\frac{v^2}{2g}$
----------	----------------------------	---	-------------------

Exit	K
conduit to still water	1

$$h_m$$
 = headloss inlet pipe (m)

$$v =$$
 water velocity in discharge pipe (m/s)

$$g = Acceleration due to gravity 9.81 m/s^2$$

$$\therefore \qquad \qquad h_{\scriptscriptstyle m} \quad = \quad \text{0.215399} \qquad \text{m}.$$

2.2 Minor Head losses in Pressure Conduits

$$h = k \frac{v^2}{2g} x number$$

Table 5 Minor Head losses in Pressure Conduits

Item	K factor	Number	Total Minor head loss
1. Gate Valve			
- Full open	0.19	1	0.040926
- One-fourth closed	1.15		0
- One - half closed	5.6		0
- Three - forths closed	24		0
- Typical value	1		0
2. Butterfly Valve			
- Full open	0.3		0
- 20°	1.4		0
- Angle closed 40°	10		0
- 60°	94		0
- Typical value	1.2		0
3. Check valve			
- K = 1.5 - 2.5	1.5		0
4. Plug Valve	1		0
5. Elbow (45 -61 cm diameter)			
-22.5° (K = 0.1 - 0.2)	0.1		0
-45° (K = 0.2 - 0.3)	0.2		0
-90° (K = 0.25 - 0.6)	0.25		0
6. Tee			
- Run to run (K = 0.25 - 0.6)	0.25		0
- Branch to run(K= 0.6 - 1.8)	0.6		0
- Run to branch(K=0.6 - 1.8)	0.6		0

Table 5 Minor Head losses in Pressure Conduits (contrinues)

Item	K factor	Number	Total Minor head loss
7. Reduer			
(with angle of divergence			
10°-20°)			
K = 0.15 - 0.2	0.15		0
8. Increaser			
(with angle of divergence			
10°-20°)			
K = 0.05 - 0.3	0.05		0
		Total	0.040926

2.3 Friction losses in the pipe are typically calculated from Dracy-Weisbach

 $\boxed{Equation \quad h_f = f \frac{L}{D} \frac{v^2}{2g}}$

where

 h_f = total friction head loss in suction or discharge pipes,(m)

L = length of pipe,(m) (suction or discharge pipes)

D = diameter of the pipe,(m)

v = velocity in the pipe,(m/s)

f = coefficient of friction (Dracy - Weisbach) page 636(integrated design of water

treatment facilities)

g = acceleration due to gravity, 9.81 m/s²

Table 6 Approximate Minor Head Losses in Fittings and Valves (page 98, water and wastewater technology)

Fitting and Valve	Equivalent Length	Loss Coefficient
	(Diameters of pipe)	k
1. Tee (run)	20	0.6
2. Tee (branch)	60	1.8
3.90° bend-		
Short radius	32	0.9
Medium radius	27	0.75
Long radius	20	0.6
4. 45° bend	15	0.42
5. Gate Valve (full open)	17	0.48
(open 1:4)	1000	
6. Swing check valve(open)	135	3.7
7. Butterfly valve (open)	40	1.2
8. Glove valve (open)	200	
9. Check valve(full open)	150	
10. Check valve with strainer	400	

Table 7 Approximate Minor Head Losses in Fittings and Valves in term Equavalent Pipe Length($L_{\rm e}$)

Fitting and Valve	Equivalent Length	Pieces	Diameter suction pipe	Equivalent Pipe(L _e)
	(Diameters of pipe)		(m.)	(m.)
1. Tee (run)	20		0.0508	0
2. Tee (branch)	60		0.0508	0
3.90° bend-				0
Short radius	32		0.0508	0
Medium radius	27		0.0508	0
Long radius	20		0.0508	0
4. 90° Standard	30	1	0.0508	1.524
4. 45° bend	15		0.0508	0
5. Gate Valve (full open)	17		0.0508	0
(open 1:4)	1000		0.0508	0
6. Swing check valve(open)	135		0.0508	0
7. Butterfly valve (open)	40	1	0.0508	2.032
8. Glove valve (open)	200		0.0508	0
9. Check valve(full open)	150		0.0508	0
10. Check valve with strainer	400		0.0508	0
			Total (L _e)	3.556

Table 8 Relation between surface conditions and friction coefficien

Condition	Friction Coefficient				
	n (Manning's)	C (Hazen's)	f (Darcy's)	Notes	
Very smooth surface	0.01	140	0.0002	PVC Pipe clean cement	
				lined pipe	
Fair condition surface	0.013	120	0.0012	Unlined pipe	
Rough surface	0.016	100	0.0025	Rusted pipe	

Pipe Material: PVC \therefore f = 0.0002

 $h_f = 0.004712 \quad \text{m.}$

Total Head Loss in Discharge Pipe = h_m + Mior head losses in Pressure Conduits + h_f Total Head Loss in Discharge Pipe = 0.261037

3. Total Dynamic Head(TDH)

1. Head Loss in Suction Pipe = 0.153337

2. Head Loss in Discharge Pipe = 0.261037

3. Total Static Head = Static Suction Lift + Static Discharge Head

12

- Total Dynamic Head = 12.41437 m.
- 4. Power Requirement (Theory) or power output of the pump (water power)

Equation
$$P_{w} = Q(m^{3}/s)xTDH(m)x\gamma(KN/m^{3}) KW$$
Equation
$$P_{w} = Q(m^{3}/s)xTDH(m)x9.81(KN/m^{3})$$
Equation
$$P_{w} = \frac{Q(ft^{3}/s)xTDH(ft)x62.4lb/ft^{3}}{550} HP$$

$$P_{w} = 0.507438 KN.m/s Watt = N.m/s = kg.m/s^{2}.m/s$$

$$\therefore P_{w} = 0.507438 KW$$

5. Pump Power Requirement or power input to the pump (break power)

Equation
$$P_p = \frac{P_w}{\eta}$$

$$P_p$$
 = Pump Power Requirement,(KW)
 Efficiency of pump and motor (60% - 70%) Choose η = 60%
 (Usually 70 - 90%)

$$\therefore \qquad P_p = 0.845729 \quad KW$$

From 0.7457
$$KW = 1$$
 HP

$$\therefore 0.845729 \quad KW = 1.134141 \quad HP$$

Equation:
$$\rho = \frac{\gamma(N/m^3)}{g(m/s^2)}$$

Equation:
$$F = m(kg)xa(m/s^2)$$

$$\therefore \qquad F = ma \quad (kg.m/s^2 = N)$$

$$\therefore \qquad \rho = \frac{\gamma(kg.m/s^2)/m^3}{g(m/s^2)} (kg/m^3)$$

Equation:

$$\therefore \qquad \boxed{\gamma = \rho g \quad (N/m^3)}$$

$$\rho H_2 O = 1000 \ kg/m^3$$

$$g = 9.81 \quad m/s^2$$

$$\therefore \qquad \gamma = 1000(kg/m^3)x9.81(m/s^2)$$

$$\therefore \qquad \gamma = 9.81 \quad K(kg.m/s^2)/m^3$$

$$\therefore \qquad \gamma = 9.81 \quad KN/m^3$$

Motor Power Rating, kW	Typical Efficiency, percent		
1–5			
5–7.5	80–85		
7.5–20	85–88		
20 and above	88–92		