# การขอกแบบปั้มสู่บน้ำผ่านสารกรขง

ไขย

นายพรศัทถิ์ สมรไทรสรทิจ



Figure 7-3 Definition sketches for determination of pump total static heads. (a) Lift suction head. (b) Flooded suction head.



### Calculate Head Loss in Suction Pipe

1.Flow rate = 
$$\frac{15}{m}$$
/hr

$$=$$
 0.0508 m.

Equation 
$$Q = Av$$

$$A = \frac{\pi D^2}{4}$$

$$\therefore \qquad v = \frac{Qx4}{\pi D^2}$$

$$v = 7400.72 \text{ m/hr} = 2.055755 \text{ m/sec}$$

### 1. Calculate headloss in Suction Pipe

### 1.1 Minor losses due entrance

| Equation | $h_{\scriptscriptstyle m}$ | = | $K\frac{v^2}{2g}$ |
|----------|----------------------------|---|-------------------|
|----------|----------------------------|---|-------------------|

$$h_m$$
 = headloss inlet pipe (m)

$$v =$$
 water velocity in suction pipe (m/s)

| Entrance               |  | K    |
|------------------------|--|------|
| Pipe Project into tank |  | 0.83 |
| End of pipe flushed    |  | 0.5  |
| with tank              |  |      |
| Slightly rounded       |  | 0.23 |
| Bell mouthed           |  | 0.04 |
| m/s <sup>2</sup> Use   |  | 0.5  |

$$\therefore \qquad \qquad h_m \quad = \qquad \text{0.1077} \qquad \text{m}$$

1.2 Minor Head losses in Pressure Conduits

$$h = k \frac{v^2}{2g} x number$$

Table 1 Minor Head losses in Pressure Conduits

| Item                           | K factor | Number | Total Minor head loss |
|--------------------------------|----------|--------|-----------------------|
| 1. Gate Valve                  |          |        |                       |
| - Full open                    | 0.19     | 1      | 0.040926              |
| - One-fourth closed            | 1.15     |        | 0                     |
| - One - half closed            | 5.6      |        | 0                     |
| - Three - forths closed        | 24       |        | 0                     |
| - Typical value                | 1        |        | 0                     |
| 2. Butterfly Valve             |          |        |                       |
| - Full open                    | 0.3      |        | 0                     |
| - 20°                          | 1.4      |        | 0                     |
| - Angle closed $40^{\circ}$    | 10       |        | 0                     |
| - 60°                          | 94       |        | 0                     |
| - Typical value                | 1.2      |        | 0                     |
| 3. Check valve                 |          |        |                       |
| - K = 1.5 - 2.5                | 1.5      |        | 0                     |
| 4. Plug Valve                  | 1        |        | 0                     |
| 5. Elbow (45 -61 cm diameter)  |          |        |                       |
| - 22.5° (K = 0.1 - 0.2)        | 0.1      |        | 0                     |
| $-45^{\circ}$ (K = 0.2 - 0.3)  | 0.2      |        | 0                     |
| $-90^{\circ}$ (K = 0.25 - 0.6) | 0.25     |        | 0                     |
| 6. Tee                         |          |        |                       |
| - Run to run (K = 0.25 - 0.6)  | 0.25     |        | 0                     |
| - Branch to run(K= 0.6 - 1.8)  | 0.6      |        | 0                     |
| - Run to branch(K=0.6 - 1.8)   | 0.6      |        | 0                     |
|                                |          |        |                       |

Table 1 Minor Head losses in Pressure Conduits (contrinues)

| Item                      | K factor | Number | Total Minor head loss |
|---------------------------|----------|--------|-----------------------|
| 7. Reduer                 |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°-20°)                  |          |        |                       |
| K = 0.15 - 0.2            | 0.15     |        | 0                     |
| 8. Increaser              |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°- 20°)                 |          |        |                       |
| K = 0.05 - 0.3            | 0.05     |        | 0                     |
|                           |          |        |                       |
|                           |          | Total  | 0.040926              |

1.3 Friction losses in the pipe are typically calculated from Dracy-Weisbach

 $\boxed{Equation \quad h_f = f \frac{L}{D} \frac{v^2}{2g}}$ 

where

 $h_f$  = total friction head loss in suction or discharge pipes,(m)

L = length of pipe,(m) (suction or discharge pipes)

D = diameter of the pipe,(m)

v = velocity in the pipe,(m/s)

f = coefficient of friction (Dracy - Weisbach) page 636(integrated design of water

treatment facilities)

g = acceleration due to gravity, 9.81 m/s<sup>2</sup>

Table 2 Approximate Minor Head Losses in Fittings and Valves (page 98, water and wastewater technology)

| Fitting and Valve             | Equivalent Length   | Loss Coefficient |
|-------------------------------|---------------------|------------------|
|                               | (Diameters of pipe) | k                |
| 1. Tee (run)                  | 20                  | 0.6              |
| 2. Tee (branch)               | 60                  | 1.8              |
| 3.90° bend-                   |                     |                  |
| Short radius                  | 32                  | 0.9              |
| Medium radius                 | 27                  | 0.75             |
| Long radius                   | 20                  | 0.6              |
| 4. 45° bend                   | 15                  | 0.42             |
| 5. Gate Valve (full open)     | 17                  | 0.48             |
| (open 1:4)                    | 1000                |                  |
| 6. Swing check valve(open)    | 135                 | 3.7              |
| 7. Butterfly valve (open)     | 40                  | 1.2              |
| 8. Glove valve (open)         | 200                 |                  |
| 9. Check valve(full open)     | 150                 |                  |
| 10. Check valve with strainer | 400                 |                  |

Table 3 Approximate Minor Head Losses in Fittings and Valves in term Equavalent Pipe Length( $L_{\rm e}$ )

| Fitting and Valve             | Equivalent Length   | Pieces | Diameter suction pipe   | Equivalent Pipe(L <sub>e</sub> ) |
|-------------------------------|---------------------|--------|-------------------------|----------------------------------|
|                               | (Diameters of pipe) |        | (m.)                    | (m.)                             |
| 1. Tee (run)                  | 20                  |        | 0.0508                  | 0                                |
| 2. Tee (branch)               | 60                  |        | 0.0508                  | 0                                |
| $3.90^{\circ}$ bend-          |                     |        |                         | 0                                |
| Short radius                  | 32                  |        | 0.0508                  | 0                                |
| Medium radius                 | 27                  |        | 0.0508                  | 0                                |
| Long radius                   | 20                  |        | 0.0508                  | 0                                |
| 4. 90° Standard               | 30                  | 1      | 0.0508                  | 1.524                            |
| 4. 45° bend                   | 15                  |        | 0.0508                  | 0                                |
| 5. Gate Valve (full open)     | 17                  |        | 0.0508                  | 0                                |
| (open 1:4)                    | 1000                |        | 0.0508                  | 0                                |
| 6. Swing check valve(open)    | 135                 |        | 0.0508                  | 0                                |
| 7. Butterfly valve (open)     | 40                  | 1      | 0.0508                  | 2.032                            |
| 8. Glove valve (open)         | 200                 |        | 0.0508                  | 0                                |
| 9. Check valve(full open)     | 150                 |        | 0.0508                  | 0                                |
| 10. Check valve with strainer | 400                 |        | 0.0508                  | 0                                |
|                               |                     |        | Total (L <sub>e</sub> ) | 3.556                            |

Table 4 Relation between surface conditions and friction coefficien

| Condition              | Friction Coefficient |             |             |                       |
|------------------------|----------------------|-------------|-------------|-----------------------|
|                        | n (Manning's)        | C (Hazen's) | f (Darcy's) | Notes                 |
| Very smooth surface    | 0.01                 | 140         | 0.0002      | PVC Pipe clean cement |
|                        |                      |             |             | lined pipe            |
| Fair condition surface | 0.013                | 120         | 0.0012      | Unlined pipe          |
| Rough surface          | 0.016                | 100         | 0.0025      | Rusted pipe           |

Pipe Material: PVC  $\therefore$  f = 0.0002

 $h_f = 0.004712 \quad \text{m}.$ 

.. Total Head Loss in Suction Pipe :  $h_m$  + Mior head losses in Pressure Conduits +  $h_f$  Total Head Loss in Suction Pipe : 0.153337

### Calculate Head Loss in Discharge Pipe

1.Flow rate = 
$$15 \text{ m}^3/\text{hr} = 0.004167 \text{ m}^3/\text{s}$$

$$Equation Q = Av$$

$$A = \frac{\pi D^2}{4}$$

$$\therefore \qquad v = \frac{Qx4}{\pi D^2}$$

$$v = 7400.72 \text{ m/hr} = 2.055755 \text{ m/sec}$$

### 2. Calculate headloss in Discharge Pipe

### 2.1 Minor losses due exit

| Equation | $h_{\scriptscriptstyle m}$ | = | $K\frac{v^2}{2g}$ |
|----------|----------------------------|---|-------------------|
|----------|----------------------------|---|-------------------|

| Exit                   | K |
|------------------------|---|
| conduit to still water | 1 |

$$h_m$$
 = headloss inlet pipe (m)

$$v =$$
 water velocity in discharge pipe (m/s)

$$g$$
 = Acceleration due to gravity 9.81 m/s<sup>2</sup>

$$\therefore \qquad \qquad h_{\scriptscriptstyle m} \quad = \quad \text{0.215399} \qquad \text{m}.$$

### 2.2 Minor Head losses in Pressure Conduits

$$h = k \frac{v^2}{2g} x number$$

Table 5 Minor Head losses in Pressure Conduits

| Item                            | K factor | Number | Total Minor head loss |
|---------------------------------|----------|--------|-----------------------|
| 1. Gate Valve                   |          |        |                       |
| - Full open                     | 0.19     | 1      | 0.040926              |
| - One-fourth closed             | 1.15     |        | 0                     |
| - One - half closed             | 5.6      |        | 0                     |
| - Three - forths closed         | 24       |        | 0                     |
| - Typical value                 | 1        |        | 0                     |
| 2. Butterfly Valve              |          |        |                       |
| - Full open                     | 0.3      |        | 0                     |
| - 20°                           | 1.4      |        | 0                     |
| - Angle closed $40^{\circ}$     | 10       |        | 0                     |
| - 60°                           | 94       |        | 0                     |
| - Typical value                 | 1.2      |        | 0                     |
| 3. Check valve                  |          |        |                       |
| - K = 1.5 - 2.5                 | 1.5      |        | 0                     |
| 4. Plug Valve                   | 1        |        | 0                     |
| 5. Elbow (45 -61 cm diameter)   |          |        |                       |
| $-22.5^{\circ}$ (K = 0.1 - 0.2) | 0.1      |        | 0                     |
| $-45^{\circ}$ (K = 0.2 - 0.3)   | 0.2      |        | 0                     |
| $-90^{\circ}$ (K = 0.25 - 0.6)  | 0.25     |        | 0                     |
| 6. Tee                          |          |        |                       |
| - Run to run (K = 0.25 - 0.6)   | 0.25     |        | 0                     |
| - Branch to run(K= 0.6 - 1.8)   | 0.6      |        | 0                     |
| - Run to branch(K=0.6 - 1.8)    | 0.6      |        | 0                     |
|                                 |          |        |                       |

Table 5 Minor Head losses in Pressure Conduits (contrinues)

| Item                      | K factor | Number | Total Minor head loss |
|---------------------------|----------|--------|-----------------------|
| 7. Reduer                 |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°-20°)                  |          |        |                       |
| K = 0.15 - 0.2            | 0.15     |        | 0                     |
| 8. Increaser              |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°-20°)                  |          |        |                       |
| K = 0.05 - 0.3            | 0.05     |        | 0                     |
|                           |          |        |                       |
|                           |          | Total  | 0.040926              |

2.3 Friction losses in the pipe are typically calculated from Dracy-Weisbach

 $\boxed{Equation \quad h_f = f \frac{L}{D} \frac{v^2}{2g}}$ 

where

 $h_f$  = total friction head loss in suction or discharge pipes,(m)

L = length of pipe,(m) (suction or discharge pipes)

D = diameter of the pipe,(m)

v = velocity in the pipe,(m/s)

f = coefficient of friction (Dracy - Weisbach) page 636(integrated design of water

treatment facilities)

g = acceleration due to gravity, 9.81 m/s<sup>2</sup>

Table 6 Approximate Minor Head Losses in Fittings and Valves (page 98, water and wastewater technology)

| Fitting and Valve             | Equivalent Length   | Loss Coefficient |
|-------------------------------|---------------------|------------------|
|                               | (Diameters of pipe) | k                |
| 1. Tee (run)                  | 20                  | 0.6              |
| 2. Tee (branch)               | 60                  | 1.8              |
| 3.90° bend-                   |                     |                  |
| Short radius                  | 32                  | 0.9              |
| Medium radius                 | 27                  | 0.75             |
| Long radius                   | 20                  | 0.6              |
| 4. 45° bend                   | 15                  | 0.42             |
| 5. Gate Valve (full open)     | 17                  | 0.48             |
| (open 1:4)                    | 1000                |                  |
| 6. Swing check valve(open)    | 135                 | 3.7              |
| 7. Butterfly valve (open)     | 40                  | 1.2              |
| 8. Glove valve (open)         | 200                 |                  |
| 9. Check valve(full open)     | 150                 |                  |
| 10. Check valve with strainer | 400                 |                  |

Table 7 Approximate Minor Head Losses in Fittings and Valves in term Equavalent Pipe Length( $L_{\rm e}$ )

| Fitting and Valve             | Equivalent Length   | Pieces | Diameter suction pipe   | Equivalent Pipe(L <sub>e</sub> ) |
|-------------------------------|---------------------|--------|-------------------------|----------------------------------|
|                               | (Diameters of pipe) |        | (m.)                    | (m.)                             |
| 1. Tee (run)                  | 20                  |        | 0.0508                  | 0                                |
| 2. Tee (branch)               | 60                  |        | 0.0508                  | 0                                |
| $3.90^{\circ}$ bend-          |                     |        |                         | 0                                |
| Short radius                  | 32                  |        | 0.0508                  | 0                                |
| Medium radius                 | 27                  |        | 0.0508                  | 0                                |
| Long radius                   | 20                  |        | 0.0508                  | 0                                |
| 4. 90° Standard               | 30                  | 1      | 0.0508                  | 1.524                            |
| 4. 45° bend                   | 15                  |        | 0.0508                  | 0                                |
| 5. Gate Valve (full open)     | 17                  |        | 0.0508                  | 0                                |
| (open 1:4)                    | 1000                |        | 0.0508                  | 0                                |
| 6. Swing check valve(open)    | 135                 |        | 0.0508                  | 0                                |
| 7. Butterfly valve (open)     | 40                  | 1      | 0.0508                  | 2.032                            |
| 8. Glove valve (open)         | 200                 |        | 0.0508                  | 0                                |
| 9. Check valve(full open)     | 150                 |        | 0.0508                  | 0                                |
| 10. Check valve with strainer | 400                 |        | 0.0508                  | 0                                |
|                               |                     |        | Total (L <sub>e</sub> ) | 3.556                            |

Equivalent length in Suction pipe (
$$L_{\rm suc}$$
) = suction pipe length +  $L_{\rm e}$  = 2 + 3.556  $L_{\rm suc}$  = 5.556

Table 8 Relation between surface conditions and friction coefficien

| Condition              | Friction Coefficient |             |                          |              |  |
|------------------------|----------------------|-------------|--------------------------|--------------|--|
|                        | n (Manning's)        | C (Hazen's) | f (Darcy's)              | Notes        |  |
| Very smooth surface    | 0.01                 | 140         | 0.0002 PVC Pipe clean ce |              |  |
|                        |                      |             |                          | lined pipe   |  |
| Fair condition surface | 0.013                | 120         | 0.0012                   | Unlined pipe |  |
| Rough surface          | 0.016                | 100         | 0.0025                   | Rusted pipe  |  |

Pipe Material: PVC  $\therefore$  f = 0.0002

 $h_f = 0.004712 \quad \text{m}.$ 

Total Head Loss in Discharge Pipe =  $h_m$  + Mior head losses in Pressure Conduits +  $h_f$ Total Head Loss in Discharge Pipe = 0.2610366

### Calculate Head Loss in Influent Pipe

1.Flow rate = 
$$15 \text{ m}^3/\text{hr} = 0.004167 \text{ m}^3/\text{s}$$

$$=$$
 0.0508 m.

## $\boxed{Equation \ Q = Av}$

$$A = \frac{\pi D^2}{4}$$

$$\therefore \qquad v = \frac{Qx4}{\pi D^2}$$

$$v = 7400.72 \text{ m/hr} = 2.055755 \text{ m/sec}$$

- 3. Calculate headloss in Inlet Pipe
- 3.1 Minor losses due entrance

| Equation | $h_{\scriptscriptstyle m}$ | = | $K\frac{v^2}{2g}$ |
|----------|----------------------------|---|-------------------|
|----------|----------------------------|---|-------------------|

| Entrance               | K   |
|------------------------|-----|
| conduit to still water | 0.5 |

$$h_m$$
 = headloss inlet pipe (m)

$$v =$$
 water velocity in entrance pipe (m/s)

$$g = Acceleration due to gravity 9.81 m/s2$$

$$\therefore \qquad \qquad h_{\scriptscriptstyle m} \quad = \qquad \text{0.1077} \qquad \text{m}$$

### 3.2 Minor Head losses in Pressure Conduits

$$h = k \frac{v^2}{2g} x number$$

Table 9 Minor Head losses in Pressure Conduits

| Item                            | K factor | Number | Total Minor head loss |
|---------------------------------|----------|--------|-----------------------|
| 1. Gate Valve                   |          |        |                       |
| - Full open                     | 0.19     | 1      | 0.040926              |
| - One-fourth closed             | 1.15     |        | 0                     |
| - One - half closed             | 5.6      |        | 0                     |
| - Three - forths closed         | 24       |        | 0                     |
| - Typical value                 | 1        |        | 0                     |
| 2. Butterfly Valve              |          |        |                       |
| - Full open                     | 0.3      |        | 0                     |
| - 20°                           | 1.4      |        | 0                     |
| - Angle closed $40^{\circ}$     | 10       |        | 0                     |
| - 60°                           | 94       |        | 0                     |
| - Typical value                 | 1.2      |        | 0                     |
| 3. Check valve                  |          |        |                       |
| - K = 1.5 - 2.5                 | 1.5      |        | 0                     |
| 4. Plug Valve                   | 1        |        | 0                     |
| 5. Elbow (45 -61 cm diameter)   |          |        |                       |
| $-22.5^{\circ}$ (K = 0.1 - 0.2) | 0.1      |        | 0                     |
| $-45^{\circ}$ (K = 0.2 - 0.3)   | 0.2      |        | 0                     |
| $-90^{\circ}$ (K = 0.25 - 0.6)  | 0.25     |        | 0                     |
| 6. Tee                          |          |        |                       |
| - Run to run (K = 0.25 - 0.6)   | 0.25     |        | 0                     |
| - Branch to run(K= 0.6 - 1.8)   | 0.6      |        | 0                     |
| - Run to branch(K=0.6 - 1.8)    | 0.6      |        | 0                     |
|                                 |          |        |                       |

Table 9 Minor Head losses in Pressure Conduits (contrinues)

| Item                      | K factor | Number | Total Minor head loss |
|---------------------------|----------|--------|-----------------------|
| 7. Reduer                 |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°-20°)                  |          |        |                       |
| K = 0.15 - 0.2            | 0.15     |        | 0                     |
| 8. Increaser              |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°-20°)                  |          |        |                       |
| K = 0.05 - 0.3            | 0.05     |        | 0                     |
|                           |          |        |                       |
|                           |          | Total  | 0.040926              |

3.3 Friction losses in the pipe are typically calculated from Dracy-Weisbach

 $\boxed{Equation \quad h_f = f \frac{L}{D} \frac{v^2}{2g}}$ 

where

 $h_f$  = total friction head loss in suction or discharge pipes,(m)

L = length of pipe,(m) (suction or discharge pipes)

D = diameter of the pipe,(m)

v = velocity in the pipe,(m/s)

f = coefficient of friction (Dracy - Weisbach) page 636(integrated design of water

treatment facilities)

r = acceleration due to gravity, 9.81 m/s<sup>2</sup>

Table 10 Approximate Minor Head Losses in Fittings and Valves (page 98, water and wastewater technology)

| Fitting and Valve             | Equivalent Length   | Loss Coefficient |
|-------------------------------|---------------------|------------------|
|                               | (Diameters of pipe) | k                |
| 1. Tee (run)                  | 20                  | 0.6              |
| 2. Tee (branch)               | 60                  | 1.8              |
| 3.90° bend-                   |                     |                  |
| Short radius                  | 32                  | 0.9              |
| Medium radius                 | 27                  | 0.75             |
| Long radius                   | 20                  | 0.6              |
| 4. 45° bend                   | 15                  | 0.42             |
| 5. Gate Valve (full open)     | 17                  | 0.48             |
| (open 1:4)                    | 1000                |                  |
| 6. Swing check valve(open)    | 135                 | 3.7              |
| 7. Butterfly valve (open)     | 40                  | 1.2              |
| 8. Glove valve (open)         | 200                 |                  |
| 9. Check valve(full open)     | 150                 |                  |
| 10. Check valve with strainer | 400                 |                  |

Table 11 Approximate Minor Head Losses in Fittings and Valves in term Equavalent Pipe Length( $L_{\rm e}$ )

| Fitting and Valve             | Equivalent Length   | Pieces | Diameter suction pipe   | Equivalent Pipe(L <sub>e</sub> ) |
|-------------------------------|---------------------|--------|-------------------------|----------------------------------|
|                               | (Diameters of pipe) |        | (m.)                    | (m.)                             |
| 1. Tee (run)                  | 20                  |        | 0.0508                  | 0                                |
| 2. Tee (branch)               | 60                  |        | 0.0508                  | 0                                |
| $3.90^{\circ}$ bend-          |                     |        |                         | 0                                |
| Short radius                  | 32                  |        | 0.0508                  | 0                                |
| Medium radius                 | 27                  |        | 0.0508                  | 0                                |
| Long radius                   | 20                  |        | 0.0508                  | 0                                |
| 4. 90° Standard               | 30                  | 1      | 0.0508                  | 1.524                            |
| 4. 45° bend                   | 15                  |        | 0.0508                  | 0                                |
| 5. Gate Valve (full open)     | 17                  |        | 0.0508                  | 0                                |
| (open 1:4)                    | 1000                |        | 0.0508                  | 0                                |
| 6. Swing check valve(open)    | 135                 |        | 0.0508                  | 0                                |
| 7. Butterfly valve (open)     | 40                  | 1      | 0.0508                  | 2.032                            |
| 8. Glove valve (open)         | 200                 |        | 0.0508                  | 0                                |
| 9. Check valve(full open)     | 150                 |        | 0.0508                  | 0                                |
| 10. Check valve with strainer | 400                 |        | 0.0508                  | 0                                |
|                               |                     |        | Total (L <sub>e</sub> ) | 3.556                            |

Equivalent length in Suction pipe (
$$L_{\rm suc}$$
) = suction pipe length +  $L_{\rm e}$  = 2 + 3.556 
$$L_{\rm suc}$$
 = 5.556

Table 12 Relation between surface conditions and friction coefficien

| Condition              | Friction Coefficient |             |             |                       |  |
|------------------------|----------------------|-------------|-------------|-----------------------|--|
|                        | n (Manning's)        | C (Hazen's) | f (Darcy's) | Notes                 |  |
| Very smooth surface    | 0.01                 | 140         | 0.0002      | PVC Pipe clean cement |  |
|                        |                      |             |             | lined pipe            |  |
| Fair condition surface | 0.013                | 120         | 0.0012      | Unlined pipe          |  |
| Rough surface          | 0.016                | 100         | 0.0025      | Rusted pipe           |  |

Pipe Material: PVC  $\therefore$  f = 0.0002

 $h_f = 0.004712 \quad \text{m.}$ 

Total Head Loss in Influent Pipe =  $h_m$  + Mior head losses in Pressure Conduits +  $h_f$ Total Head Loss in Influent Pipe = 0.153337

### Calculate Head Loss Through Media

### 4 Choose Single filter media and Backwash by pump

|            | Flow Rate                               | =             | 15                        | m <sup>3</sup> /hr                |
|------------|-----------------------------------------|---------------|---------------------------|-----------------------------------|
|            | Number of Filtration Tank               | =             | 3                         | Tank                              |
|            | Flow Rate per Tank                      | =             | 5                         | m <sup>3</sup> /hr                |
| <i>:</i> . | Flow Rate Per Tank for Design           | =             | 8                         | m <sup>3</sup> /hr                |
|            | Calculate Entrance Pipe Size            |               |                           |                                   |
|            | Give Water Velocity                     | =             | 0.60                      | m/s                               |
|            | From d                                  | =             | $\sqrt{\frac{4Q}{\pi v}}$ |                                   |
|            | ∴ d                                     | =             | 0.067                     | m.                                |
|            | or                                      | =             | 100                       | mm.                               |
|            | Caculate dimensional requirements (cir  | rcular basin) |                           |                                   |
|            | Design Criteria Filtration rate         | =             | 5-10                      | m <sup>3</sup> /hr/m <sup>2</sup> |
|            | Choosed                                 | =             | 5                         | m <sup>3</sup> /hr/m <sup>2</sup> |
| ··         | Surface Area for each Filtration Tank   | =             | 1.5                       | $m^2$                             |
|            | Diameter Basin                          | =             | 1.382                     | m                                 |
|            | Acture Diameter                         | =             | 1.4                       | m                                 |
|            | Choose Backwash Rate                    | =             | 0.8                       | m/min                             |
|            | Backwash Times                          | =             | 10                        | min                               |
|            | Backwash/Day                            | =             | 1                         | Time                              |
|            | Water Loss                              | =             | 11                        | m³/day                            |
|            | Flow Rate                               | =             | 8.0                       | m <sup>3</sup> /hr                |
|            | Acture Filtration Rate                  | =             | 5.3                       | m <sup>3</sup> /hr/m <sup>2</sup> |
|            | Acture Filtration Rate if Backwash 1 Ta | ink =         | 8.0                       | m <sup>3</sup> /hr/m <sup>2</sup> |
|            | or Flow Rate per Tank if Backwash 1     | Tank =        | 12                        | m <sup>3</sup> /hr                |
|            |                                         |               |                           |                                   |

#### Choosed Media

Sand Media

- Effective size 0.45 - 0.65 mm. average 0.5 mm.

- Uniformity coeffici€ 1.40 - 1.70

- Depth 0.65 m

Anthracite Media

- Effective size 0.7 - 2 mm. average 1.35 mm.

- Uniformity coefficie 1.3 - 1.8

- Depth 0.3 - 0.6 m.

Equation  $N_R = \frac{D_p \rho_L v}{\mu}$ 

Where  $N_R$  = Renolds number

 $D_p$  = Media grain diameter,(m)

 $\rho_L$  = Density of water, (kg/m<sup>3</sup>) 25° C = 997.1 kg/m<sup>3</sup>

v = filtration velocity,(m/s)

 $\mu$  = absolute viscosity, N-s/m<sup>2</sup>(kg.m/s<sup>2</sup>)

Equation  $f = 150 \frac{(1-e)}{N_R} + 1.75$   $25^{\circ} \text{ C} = 0.0009 \text{ N-s/m}^2$ 

Where f = friction factor

e = porosity ratio (usually 0.4 - 0.5)

 $N_R$  = Renolds number

Equation Carmen – Kozeny  $h_L = \frac{f}{\phi} \frac{(1-e)}{e^3} \frac{L}{d} \frac{v^2}{g}$ 

Where  $h_L$  = head loss, (m)

f = friction factor

e = porosity ratio (usually 0.4 - 0.5)

L = media depth,(m)

d = media grain diameter,(m)

v = filtration velocity,(m/s)

g = acceleration due to gravity 9.81 m/s<sup>2</sup>

 $\phi$  = particle shape factor (usually 0.85 to 1)

### 4.1 Calculations of Head Loss through Clean Filter Media

| Layer          | Size,(mm) | Depth,(m) | Porosity | Reynolds Number     | Friction Coefficient | Head Loss          |
|----------------|-----------|-----------|----------|---------------------|----------------------|--------------------|
|                |           |           | (e)      | $N_R$               | f                    | h <sub>L</sub> (m) |
| Anthracite     | 1.0       | 0.5       | 0.48     | 1.64361             | 49.2065              | 0.02566665         |
| Layer          |           |           |          |                     |                      |                    |
| Sand           | 0.5       | 0.25      | 0.4      | 0.8218              | 111.265              | 0.115716941        |
| Layer          |           |           |          |                     |                      |                    |
| Total Depth of | the       | 0.75      | Total h  | ead loss through cl | 0.141383591          |                    |
| media layer    |           |           |          |                     |                      |                    |

### 4.2 Calculations of Head Loss through the Gravel Support

| Layer          | Size,(mm) | Depth,(m) | Porosity | Reynolds Number                          | Friction Coefficient | Head Loss          |
|----------------|-----------|-----------|----------|------------------------------------------|----------------------|--------------------|
|                |           |           | (e)      | $N_R$                                    | f                    | h <sub>L</sub> (m) |
| Top Layer      | 1.0       | 0.5       | 0.45     | 1.64361                                  | 51.9444              | 0.03478009         |
| Second Layer   | 1.0       | 0.5       | 0.45     | 1.64361                                  | 51.9444              | 0.03478009         |
| Third Layer    | 0.5       | 0.25      | 0.40     | 0.8218                                   | 111.265              | 0.11571694         |
| Bottom Layer   | 0.5       | 0.25      | 0.40     | 0.8218                                   | 111.265              | 0.11571694         |
| Total Depth of | the       | 0.75      | Total    | Total head loss through the gravel layer |                      | 0.150497036        |
| gravel layer   |           |           |          |                                          |                      |                    |

4.3 Calculations of Head Loss through the underdrain system

$$\boxed{Equation \quad H_L = k_1 v^2}$$

where

 $H_L$  = head loss through the underdrain, m

 $k_1 = \mbox{head loss constant that varies with the type of underdrain system}$  (generally is given by the manufacture)

(for the tile underdrain selected  $k_1 = 0.0005$ 

v = filtration velocity, m/hr

$$H_L = 0.0141$$
 m.

Total Head loss across the filter Media at  $Q_{design}$ 

- = Head Loss Through Clean Filter + Head Loss Through the Gravel Support + Head Loss the Underdrain
- = 0.291880627 m.

### Calculate Head Loss in Effluent Pipe

1. Flow rate = 
$$15 \text{ m}^3/\text{hr} = 0.004167 \text{ m}^3/\text{s}$$

$$=$$
 0.0508 m.

Equation 
$$Q = Av$$

$$A = \frac{\pi D^2}{4}$$

$$\therefore \qquad v = \frac{Qx4}{\pi D^2}$$

$$v = 7400.72 \text{ m/hr} = 2.055755 \text{ m/sec}$$

- 3. Calculate headloss in Inlet Pipe
- 3.1 Minor losses due entrance

| Equation | $h_{\scriptscriptstyle m}$ | = | $K\frac{v^2}{2g}$ |
|----------|----------------------------|---|-------------------|
|----------|----------------------------|---|-------------------|

| Entrance               | К   |
|------------------------|-----|
| conduit to still water | 0.5 |

$$h_m$$
 = headloss inlet pipe (m)

$$v =$$
 water velocity in entrance pipe (m/s)

$$g$$
 = Acceleration due to gravity 9.81 m/s<sup>2</sup>

$$h_m = 0.1077$$
 m.

### 3.2 Minor Head losses in Pressure Conduits

$$h = k \frac{v^2}{2g} x number$$

Table 9 Minor Head losses in Pressure Conduits

| Item                            | K factor | Number | Total Minor head loss |
|---------------------------------|----------|--------|-----------------------|
| 1. Gate Valve                   |          |        |                       |
| - Full open                     | 0.19     | 1      | 0.040926              |
| - One-fourth closed             | 1.15     |        | 0                     |
| - One - half closed             | 5.6      |        | 0                     |
| - Three - forths closed         | 24       |        | 0                     |
| - Typical value                 | 1        |        | 0                     |
| 2. Butterfly Valve              |          |        |                       |
| - Full open                     | 0.3      |        | 0                     |
| - 20°                           | 1.4      |        | 0                     |
| - Angle closed 40°              | 10       |        | 0                     |
| - 60°                           | 94       |        | 0                     |
| - Typical value                 | 1.2      |        | 0                     |
| 3. Check valve                  |          |        |                       |
| - K = 1.5 - 2.5                 | 1.5      |        | 0                     |
| 4. Plug Valve                   | 1        |        | 0                     |
| 5. Elbow (45 -61 cm diameter)   |          |        |                       |
| $-22.5^{\circ}$ (K = 0.1 - 0.2) | 0.1      |        | 0                     |
| $-45^{\circ}$ (K = 0.2 - 0.3)   | 0.2      |        | 0                     |
| $-90^{\circ}$ (K = 0.25 - 0.6)  | 0.25     |        | 0                     |
| 6. Tee                          |          |        |                       |
| - Run to run (K = 0.25 - 0.6)   | 0.25     |        | 0                     |
| - Branch to run(K= 0.6 - 1.8)   | 0.6      |        | 0                     |
| - Run to branch(K=0.6 - 1.8)    | 0.6      |        | 0                     |

Table 9 Minor Head losses in Pressure Conduits (contrinues)

| Item                      | K factor | Number | Total Minor head loss |
|---------------------------|----------|--------|-----------------------|
| 7. Reduer                 |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°-20°)                  |          |        |                       |
| K = 0.15 - 0.2            | 0.15     |        | 0                     |
| 8. Increaser              |          |        |                       |
| (with angle of divergence |          |        |                       |
| 10°-20°)                  |          |        |                       |
| K = 0.05 - 0.3            | 0.05     |        | 0                     |
|                           |          |        |                       |
|                           |          | Total  | 0.040926              |

3.3 Friction losses in the pipe are typically calculated from Dracy-Weisbach

$$\boxed{Equation \quad h_f = f \frac{L}{D} \frac{v^2}{2g}}$$

where

 $h_f =$  total friction head loss in suction or discharge pipes,(m)

L = length of pipe,(m) (suction or discharge pipes)

D = diameter of the pipe,(m)

v = velocity in the pipe,(m/s)

f = coefficient of friction (Dracy - Weisbach) page 636(integrated design of water

treatment facilities)

g = acceleration due to gravity, 9.81 m/s<sup>2</sup>

Table 10 Approximate Minor Head Losses in Fittings and Valves (page 98, water and wastewater technology)

| Fitting and Valve             | Equivalent Length   | Loss Coefficient |
|-------------------------------|---------------------|------------------|
|                               | (Diameters of pipe) | k                |
| 1. Tee (run)                  | 20                  | 0.6              |
| 2. Tee (branch)               | 60                  | 1.8              |
| 3.90° bend-                   |                     |                  |
| Short radius                  | 32                  | 0.9              |
| Medium radius                 | 27                  | 0.75             |
| Long radius                   | 20                  | 0.6              |
| 4. 45° bend                   | 15                  | 0.42             |
| 5. Gate Valve (full open)     | 17                  | 0.48             |
| (open 1:4)                    | 1000                |                  |
| 6. Swing check valve(open)    | 135                 | 3.7              |
| 7. Butterfly valve (open)     | 40                  | 1.2              |
| 8. Glove valve (open)         | 200                 |                  |
| 9. Check valve(full open)     | 150                 |                  |
| 10. Check valve with strainer | 400                 |                  |

Table 11 Approximate Minor Head Losses in Fittings and Valves in term Equavalent Pipe Length( $L_{\rm e}$ )

| Fitting and Valve             | Equivalent Length   | Pieces | Diameter suction pipe   | Equivalent Pipe(L <sub>e</sub> ) |
|-------------------------------|---------------------|--------|-------------------------|----------------------------------|
|                               | (Diameters of pipe) |        | (m.)                    | (m.)                             |
| 1. Tee (run)                  | 20                  |        | 0.0508                  | 0                                |
| 2. Tee (branch)               | 60                  |        | 0.0508                  | 0                                |
| 3.90° bend-                   |                     |        |                         | 0                                |
| Short radius                  | 32                  |        | 0.0508                  | 0                                |
| Medium radius                 | 27                  |        | 0.0508                  | 0                                |
| Long radius                   | 20                  |        | 0.0508                  | 0                                |
| 4. 90° Standard               | 30                  | 1      | 0.0508                  | 1.524                            |
| 4. 45° bend                   | 15                  |        | 0.0508                  | 0                                |
| 5. Gate Valve (full open)     | 17                  |        | 0.0508                  | 0                                |
| (open 1:4)                    | 1000                |        | 0.0508                  | 0                                |
| 6. Swing check valve(open)    | 135                 |        | 0.0508                  | 0                                |
| 7. Butterfly valve (open)     | 40                  | 1      | 0.0508                  | 2.032                            |
| 8. Glove valve (open)         | 200                 |        | 0.0508                  | 0                                |
| 9. Check valve(full open)     | 150                 |        | 0.0508                  | 0                                |
| 10. Check valve with strainer | 400                 |        | 0.0508                  | 0                                |
|                               |                     |        | Total (L <sub>e</sub> ) | 3.556                            |

Table 12 Relation between surface conditions and friction coefficient

| Condition              |               | Friction Coeffic | ient        |                       |
|------------------------|---------------|------------------|-------------|-----------------------|
|                        | n (Manning's) | C (Hazen's)      | f (Darcy's) | Notes                 |
| Very smooth surface    | 0.01          | 140              | 0.0002      | PVC Pipe clean cement |
|                        |               |                  |             | lined pipe            |
| Fair condition surface | 0.013         | 120              | 0.0012      | Unlined pipe          |
| Rough surface          | 0.016         | 100              | 0.0025      | Rusted pipe           |

Pipe Material: PVC  $\therefore$  f = 0.0002

 $h_f = 0.004712$  m.

Total Head Loss in Effluent Pipe =  $h_m$  + Mior head losses in Pressure Conduits +  $h_f$ Total Head Loss in Effluent Pipe = 0.153337

3. Total Dynamic Head(TDH)

1. Head Loss in Suction Pipe = 0.153337

2. Head Loss in Discharge Pipe = 0.261037

3. Head Loss in Influent Pipe = 0.153337

4. Head Loss Through Media = 0.291881

5. Head Loss in Effluent Pipe = 0.153337

: Head Loss (pipe + media) = 1 + 2 + 3 + 4 + 5

1.012928

6. Total Static Head = 12

Equation Total Dynamic Head = Total Static Head + Headloss (pipe + media)

Total Dynamic Head = 13.01293 m.

4. Power Requirement (Theory) or power output of the pump (water power)

Equation 
$$P_w = Q(m^3/s)xTDH(m)x\gamma(KN/m^3) KW$$

Equation 
$$P_w = Q(m^3/s)xTDH(m)x9.81(KN/m^3)$$

Equation 
$$P_w = \frac{Q(ft^3/s)xTDH(ft)x62.4lb/ft^3}{550}$$
 HP

$$P_{w} = 0.531903 \ KN.m/s \ Watt = N.m/s = kg.m/s^{2}.m/s$$

 $\therefore \qquad P_{w} = 0.531903 \ KW$ 

5. Pump Power Requirement

Equation 
$$P_p = \frac{P_w}{\eta}$$

where

$$P_{_{D}}$$
 = Pump Power Requirement,(KW)

Efficiency of pump and motor (50% - 60%) Choose  $\eta = 60\%$ 

(Usually 70 - 90%)

$$\therefore P_n = 0.886506 KW$$

From  $0.7457 \ KW = 1 \ HP$ 

 $\therefore$  0.886506 KW = 1.188824 HP

| Motor Power Rating, kW | Typical Efficiency, percent |
|------------------------|-----------------------------|
| 1-5                    | 70–80                       |
| 5–7.5                  | 80–85                       |
| 7.5–20                 | 85–88                       |
| 20 and above           | 88–92                       |

Equation: 
$$\rho = \frac{\gamma(N/m^3)}{g(m/s^2)}$$

Equation: 
$$F = m(kg)xa(m/s^2)$$

$$\therefore \qquad F = ma \quad (kg.m/s^2 = N)$$

$$\therefore \qquad \rho = \frac{\gamma(kg.m/s^2)/m^3}{g(m/s^2)} \quad (kg/m^3)$$

Equation:

$$\therefore \qquad \gamma = \rho g \quad (N/m^3)$$

$$\rho H_2 O = 1000 \ kg/m^3$$

$$g = 9.81 \quad m/s^2$$

$$\therefore \qquad \gamma = 1000(kg/m^3)x9.81(m/s^2)$$

$$\therefore \qquad \gamma = 9.81 \quad K(kg.m/s^2)/m^3$$

$$\therefore \qquad \gamma = 9.81 \quad KN/m^3$$